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Methods that use distance computation between subsequences (or group of subsequences) to detect
anomalies.
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Methods that use distance computation between subsequences (or group of subsequences) to detect
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Anomaly Detection methods: Distance-based

Example of distance computation

B : B j  It2

(a) Euclidian Distance (b) DTW distance
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Anomaly Detection methods: an Example

v

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.

. . N
Matrix Profile [6] (MP)
Compute the distance to the

nearest neighbor (using the
MASS algorithm z-norm
Euclidean distance
computation) and use it as
anomaly score

Unsupervised

Univariate
sequence
/
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Anomaly Detection methods: an Example

v

The matrix Profile is computed as follows:
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[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.
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and scalable subsequence anomaly detection in large data series. The VLDB Journal 30, 6 (Nov 2021), 909-931.
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Methods that estimate the density of the space (points or subsequences) and identify as anomalies
points (or sequences)that are in low-density subspace.
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[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "

Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422
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[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.
VLDB Endow. 13, 12 (August 2020), 1821-1834
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v

Each node is an ensemble of similar
subsequences.

Each edge is associated to a weight
w that corresponds to the number
of times a subsequence move from
one node to another.

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.

VLDB Endow. 13, 12 (August 2020), 1821-1834

Series2Graph [13]

Density-based approach that
convert the time series into a
graph and detect unusual
trajectories

~

Unsupervised

Univariate

subsequence

KDD 2025 | 03/08/2025 | 116



Anomaly Detection methods: an Example

_N(1) subsequences.

N

N (©)
/ k\ (5) Each node is an ensemble of similar
'o |

Each edge is associated to a weight
w that corresponds to the number
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For a given subsequence T; , and its corresponding path
Py, =< NO NG NE+H) > we define the normality score as follows:
i+-1yw (NG NUGED) deg(ND) — 1
Norm(Py,) = Z ( z & )
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[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.
VLDB Endow. 13, 12 (August 2020), 1821-1834
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For a given subsequence T; , and its corresponding path
Py, =< NO NG NE+H) > we define the normality score as follows:
i+-1yw (NG NUGED) deg(ND) — 1
Norm(Py,) = Z ( z & )
Jj=i

[26] Schneider, J., Wenig, P. & Papenbrock, T. Distributed detection of sequential anomalies in univariate time series. The VLDB
Journal 30, 579-602 (2021).
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Snippet of SED time series
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Snippet of SED time series [14]
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0 1300

Pattern following
an unusual path in
the graph

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.

VLDB Endow. 13, 12 (August 2020), 1821-1834
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Compute Embedding Compute Graph
Projection (sum variance: 0.989) Graph mean score: 130.509

Series2Graph

Graph-Based transformation for large
Time series
Subsequence anomaly detection in long
sequences is an important problem with
applications in a wide range of domains.
However, the approaches that have been
proposed either require prior domain
knowledge, or become cumbersome and
expensive to use in situations with
recurrent anomalies. In this work, we
address these problems, and propose a
graph based method, suitable for domain
agnostic anomaly detection.

[CLuEREER Choose your Method [ Upload Time Series J [ Upload Anom

Original time series

LI L ) =S
U T W o W W vmn =

-400
1

[28] Paul Boniol, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2020. GraphAn: graph-based subsequence
anomaly detection. Proc. VLDB Endow. 13, 12 (August 2020), 2941-2944.

GraphAn [28]

An interactive tool to dive into
the computation steps of
Series2Graph :
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.
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[15] Pankaj Malhotra, Lovekesh Vig, Gautam Shro, and Puneet Agarwal. 2015. Long Short Term Memory Networks for Anomaly

Detection in Time Series. (2015).
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[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection
in Time Series. IEEE Access 7 (2019), 1991-2005.
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.
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Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the

time series is an anomaly or not.
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.

Time series T
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.

Time series T

1 1
| L | L | | |
| | I

T
1250 T- 2500 3750 5000
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20 40 20 40
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T | | |
1 I I 1
0 1250 2500 3750 5000
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.

Time series T

1 1
| L | L | | |
| I I I
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.

Time series T

1 ) 1 1 | ! 1 1
1 I |
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Anomaly Detection methods: an Example

,Anomaly score,
S = LTy, T'y) |

Reconstructed subsequence

Original subsequence

& ¢+ (D)t (D=1) s (0
Ti(j’)) Tl(f 1) T'fg) Ti,t’( )Ti.t’( )Ti,l’( )
Latent space
E(T,6p) » D(Z,6p)
I Original subsequence ' ¥ !
4 A Reconstructed
/ ' / \\ subsequence
6 2Io 4'0 60 1 b 2'0 4:0 60 '
Normal subsequence Anomalous subsequence

[17] Mayu Sakurada and Takehisa Yairi. 2014. Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction. In Proceedings

of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis (Gold Coast, Australia QLD, Australia) (MLSDA’14).

" AutoEncoders [17] (AE) A

Neural Network composed of an
encoder (that reduce the
dimensionality) and decoder
that reconstruct the time series.
The objective is to minimize the
reconstruction error.

Semi-supervised

. J

Univariate/Multivariate

Point/sequence
N Y,
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Evaluation measures: A general overview

Time Series

0 2000 4000 6000 8000

0 2000 4000 6000 8000

Anomaly score
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Evaluation measures: A general overview

Labels
A

Time Series ” ! \
u |

0 2000 4000 6000 8000

0 2000 4000 6000 8000

Anomaly score
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Evaluation measures: Threshold-based

Labels
A
_ . I N

Threshold-based Evaluation Time Series
Measures:

0 2000 4000 6000 8000 -

/\ Thresholds T

2000 4000 6000 8000

Anomaly score
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Evaluation measures: Threshold-based

Time Series “l
I” L ‘u Ll A PR

Threshold-based Evaluation
Measures:

Labels
A

Ilw””' lhlm 1

v -

/_-

KDD 2025
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Evaluation measures: Threshold-based

Time Series “l
I” L ‘u Ll A PR

Threshold-based Evaluation
Measures:

Labels
A

Il Mulm M 1 Iw o

v -

/_-
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Evaluation measures: Threshold-based

Threshold-based Evaluation
Measures:

Labels
A
Time Series
8000
M\/\JU,\L
8600 |
TP
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Evaluation measures: Threshold-based

Threshold-based Evaluation
Measures:

Labels
A
Time Series
8000

A M\/\JU,\L

EN 8000 '
Anoll Fp —

TP

: ; SN 0
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Evaluation measures: Threshold-based

Threshold-based Evaluation
Measures:

Labels
A

Time Series

8000

I
1

Anoll Fp —

FN

TP

Y

TN

v -

f
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Evaluation measures: Threshold-based

Threshold-based Evaluation
Measures:

Precision:

TP+FP
Recall (true positive rate):

TP+FN

False positive rate:
FP+TN

(1+B?)*Precision
B?*Precision+Recall

F-score:

Labels
A

Time Series

8000

I
1

Anoll Fp —

FN x

TN
TP

8000

/_—

KDD 2025
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Evaluation measures: AUC-based

Labels
A
X ) 4’ N
How do we set the threshold? Time Series l !
0% 20(;0 400=O 6=000 8600 -

Thresholds T

0 2000 4000 6000 8000
Anomaly score
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Evaluation measures: AUC-based

Labels
A
_ . r N
How do we set the threshold? Time Series l !
0 5000 4000 6000 8000 B
‘A/\/\/ 1 Thresholds T
+ \/! t } t
0 2000 4000 6000 8000

Anomaly score
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Evaluation measures: AUC-based

How do we set the threshold?

Labels

A
Time Series l !

| W

0 2000 4000 6000 8000

Thresholds T

g

0 2000 4000 6000 8000
Anomaly score
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Evaluation measures: AUC-based

AUC-based Evaluation Measures:

Labels
A

p
Time Series l

u |

0 2000 4000 6000 8000

Thresholds T

fpr

0 2000 4000 6000 8000
Anomaly score

KDD 2025 | 03/08/2025 | 157



Evaluation measures: AUC-based

Labels
A

e A
AUC-based Evaluation Measures: Time Series l !

|

0 2000 4000 6000 8000

""" ® Thresholds T .\—A~
-_-.I i t i

0 2000 4000 6000 8000
Anomaly score

===

fpr
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Evaluation measures: AUC-based

Labels

.
AUC-based Evaluation Measures: Time Series l

:
|

iz

---------- Qo 0 2000 4000

Thresholds T

6000

8000

0' 2060 4060
Anomaly score

fpr

6000

8000
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Evaluation measures: AUC-based

Labels
A
: ) 4’ N
AUC-based Evaluation Measures: Time Series l !
O# 20(;0 4060 6=OOO 8600 B

Thresholds T

0 2000 4000 6000 8000
Anomaly score
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Evaluation measures: AUC-based

Labels
A
: ) 4’ N
AUC-based Evaluation Measures: Time Series !
---------- 0 5000 4000 6000 8000 B

AUC-ROC [20]
Thresholds T

0 2000 4000 6000 8000
Anomaly score

fpr

[20] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern Recognition Letters 27, 8 (2006), 861-874. KDD 2025 | 03/08/2025 | 161



Evaluation measures: AUC-based

Labels
A

AUC-based Evaluation Measures: Time Series

0 2000 4000 6000 8000

Precision

Thresholds T

i AUC-PR [21]

1
1
1
1
I ¥ 1 il il Il
| | | | | |
: 0 2000 4000 6000 8000
: Anomaly score
Recall
[21] Jesse Davis and Mark Goadrich. 2006. The Relationship between Precision-Recall and ROC Curves. In Proceedings of the 23rd KDD 2025 | 03/08/2025 | 162

International Conference on Machine Learning (ICML '06).



Evaluation measures: Labeling issue

Labels
A

Time Series

I
n..fummh. S L ‘.MMM

Labeling can be an issue for time
series [22]:

W”W " |||| I\:\HM 1 |’H \H\!‘mum ‘ |u

8000
N UL
0 8000
Anor
[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin. ; \ Qe
Volume under the surface: a new accuracy evaluation measure for time-series KDD 2025 | 03/08/2025 | 163

anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774-2787.



Evaluation measures: Labeling issue

Labels
A

il ‘Wh M"il:”'”l i

Labeling can be an issue for time
series [22]:

8000
N UL
0 8000
Anor
[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin. ; \ Qe
Volume under the surface: a new accuracy evaluation measure for time-series KDD Z0Z5 | 03/08/2025 | 164

anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774-2787.



Evaluation measures: Labeling issue

Labels
A

Time Series

ok
in.LW"h. L0 L P ‘1‘”% MII|||”J1FI|’HHH||“ ‘ Iu

Labeling can be an issue for time
series [22]:

- Misalignment can lead to

significant changes of accuracy
values. 8000
A ML\JUAL
0 8000 |
Anor
[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin. T
Volume under the surface: a new accuracy evaluation measure for time-series KDD 2025 | 03/08/2025 | 165

anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774-2787.



Evaluation measures: Labeling issue

Labeling can be an issue for time
series [22]:

- Misalignment can lead to
significant changes of accuracy
values.

- Thisis a real issue because of:

Different Labeling strategies
between domains and
applications

Methods that produce
misaligned anomaly scores.

P
(1) Time series S
anomaly £:£

b 3'00 '600
(2) Anomaly score

w= : Subsequence method (£)
== : Point method ;

(3) Labeling strategy:g

anomaly:

(ex1) Example
on IOPS

14600 14800 15000 15200 15400

(ex2) Example on
SensorScope

12000 12200 12400 12600 12800 13000 13200

401(ex2) Example

anomaly + borders:

on NAB

anomaly + right border::

300 600 900 1200

ot

1950 2000 2050 2100 2150 2200 2250

KDD 2025 | 03/08/2025 | 166



Evaluation measures: Labeling
Issue

Existing solutions:

Range Precision and Recall [23]:

Ny .
- Recall;(R,P) = Li=1 Re‘;\C’l”T(RuP)

- Recall;(R_i, P) = a * ExistenceR(R;, P) + (1 — a) * OverlappingR(R_i, P)

N
p
Z'=1

o Precisiont(R,P;)
- Precisiony(R,P) = =

Np
- Precisiony (R, P;) = CardinalityFactor(P;, R) * Z?’;l w(P, P, NR;,6)

- Functions w( ), 6() are tunable functions to represent the overlap size
and position respectively.

Reward Existence or Overlapping?
Time Series Time Series

e

Anomaly Score Anomaly Score

Reward the beginning or the end?
Time Series Time Series

Anomaly Score Anomaly Score

[23] Nesime Tatbul, Tae Jun Lee, Stan Zdonik, Mejbah Alam, and Justin Gottschlich. 2018. Precision and Recall for Time Series. In Advances in KDD 2025 | 03/08/2025 | 167

Neural Information Processing Systems, Vol. 31.



Evaluation measures: Labeling issue

(a) Lag impact on accuracy measures

data series

\B)

~

Qo

Q

[

e

§ .

S o

S

900 1000 1100 1200 1300 1400 1500 1600 900 1000 1100 1200 1300 1400 1500 1600
time index time index
[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation KDD 2025 | 03/08/2025 | 168

measure for time-series anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774-2787.



Evaluation measures: Labeling issue

(a) Lag impact on accuracy measures
i : No lag W —-0.25%72 lag (b.5) (b.6)
1 (b.1)

N\

AUC ROC
AUC PR
Precision

Recall
F
Precision@k

data series

Rprecision
Rrecall
RF

anomaly score

900 1000 1100 1200 1300 1400 1500 1600 900 1000 1100 1200 1300 1400 1500 1600 00 05 0.0 0.2
time index time index Accuracy difference

[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation KDD 2025 | 03/08/2025 | 169
measure for time-series anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774-2787.



Evaluation measures: Labeling issue

(b) Noise impact on the accuracy measures

data series

\B)
~
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QL
n
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—~—
g
Q
S
1000 10|50 11|00 11|50 12|00 12|50 13001000 10|50 11IOO 11|50 12IOO 12|50 1300
time index time index
[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation KDD 2025 | 03/08/2025 | 170
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Evaluation measures: Labeling issue

(c) Normal — abnormal ratio impact on accuracy measures

1 1 I 1
o 41 h d.1)] +1(d.3) !
N\ 1 1 i 1
"~ 1 1 | |
~ 1 1 i
L I I |
[0
3 | :
-
S
= I
I
o 1 1.0 A
= d.?2
Q o. ( ) 0.8 A
& u-+o
0.6
o W il e
S 0.4
Q WWMW 027 r
§ I T T T T IOIO T T T T
1100 1200 1300 1400 1500 1600 1000 1500 2000 2500
time index time index
[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation KDD 2025 | 03/08/2025 | 171

measure for time-series anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774-2787.



Evaluation measures: Labeling issue

(c) Normal — abnormal ratio impact on accuracy measures

4 N\
B :ratio = 0.2 : ratio = 0.05 (d.5) (d.6)
| 11

@ Y1 (d.1)] “1(d.3) 1 AUC_ROC
e~ 1 || |
5 21 ! 21 i AUC PR
%} : -

, L
§ 01 01 Precision
< . ] ! Recall

’ F
o 1 1.0 A

d.?2 d.4 -
§ . ( ) 0.8 - ( ) Precision@k
oey o\ HTO os; Rprecision
S Lo N B Rrecall
E 0.2 A
Q L Lol Bhe Tte R B | BN RF
§ . : . . . I0.0 : . . . . . . .
1100 1200 1300 1400 1500 1600 1000 1500 2000 2500 00 05 00 02
time index time index Accuracy difference
[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation KDD 2025 | 03/08/2025 | 172

measure for time-series anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774-2787.



Evaluation measures: Labeling issue

.
Some evaluation measures are more robust to Noise and normal/abnormal ratio
variations (especially AUC-ROC and AUC-PR).
No measures are robust to small lags on anomaly scores or labels.
.
[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation KDD 2025 | 03/08/2025 | 173

measure for time-series anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774-2787.



Evaluation measures: Labeling issue

(a) Critical diagram computed using the F score in§ignificant
9 8 7 6 5 4 3 2 1 differences
POLY = (MatrixProfile |
IForest ILOF |
LSTM INormA
OCSVM AE
CNN
(b) Critical diagram computed using the range-based F score |
9 8 7 6 5 4 3 2 1 signiticant
' —— bt : — differences
POLY NormA |
IForest 1MatrixProfile |
LSTM AE
OCSVM LOF
CNN

[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. ElImore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation KDD 2025 | 03/08/2025 | 174

measure for time-series anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774-2787.



Evaluation measures: Labeling issue

~

1L
Y
<
S
~
QL
~
)
)
“n
=
—~—~
g 4]
S A e
Soof” "

1100 1200 . 1300, 1400 1500

time index
~
o Y SRR °
+~
|
for

(a) Threshold-based Accuracy measure
(ex: Precision, Recall, Rprecision)

[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. Elmore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation KDD 2025 | 03/08/2025 | 175
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Evaluation measures: Labeling issue

~
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© o Set of
3 3 threshold T
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time index . time index
—> S ° —> S :
, |
for for
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[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation KDD 2025 | 03/08/2025 | 176
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Evaluation measures: Labeling issue
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Evaluation measures: Labeling issue
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(b) AUC-based Accuracy measure
(ex: AUC-ROC, AUC-PR)
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(c) R-AUC-based Accuracy measure

(ex: R-AUC-ROC, R-AUC-PR)

[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation

measure for time-series anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774-2787.
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Evaluation measures: Labeling issue

[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation
measure for time-series anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774-2787.

set of

/A L NIy
TTTNZ

Set of

1100 1200 1300, 1400 1500
time index

fp?‘ ° o8 1.0 o
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Evaluation measures: Labeling issue

Summary:
- Volume Under the Surface [22] (VUS):

- Modify the labels with buffer regions at
the beginning and at the end of an
anomaly

- We vary the buffer size (as well as the
threshold) and we obtain a surface

- We use the volume under the surface
(VUS) as accuracy

[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation
measure for time-series anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774-2787.
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(ex: VUS-ROC, VUS-PR)
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Evaluation measures: VUS

How is it computed?
N

1 k k
AUC-ROC = =} Nipg * Afpg

k=1

ith. Ak, =FPR(Th) — FPR(Thy_,)
" |AX,r  =TPR(Thy_y) + TPR(Thy)

N
1 k k
AUC-PR = 2 Precision ARecall
k=1
k — —
with: Aﬁecall = Recall(Thy) — Recall(Thy._1)
Precision = Precision(Thy._,) + Precision(Thy.)

[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation

KDD 2025 | 03/08/2025 | 181
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Evaluation measures: VUS

How is it computed?

L N
1
_ = (k,w) w
VUS-ROC = i E E A * A

N
1 k k
AUC-ROC = = > Afpp* Mppy

L=t w=1 k=1
B Ak w) — Ak x \K + Ak x AK
TPR FPR TPR FPR
Ak . = FPR(Thy) — FPR(Thy_ tw b -1 fo-1
with: 4 k™ TPREThk) ) TP(R(YI‘ch 1; with: {OFPRe,, = FPRey (Thi) = FPRe,, (Thic-1)
= _ - :
TPR k=1 k A pr, = TPRey (Thi-t) + TPRe,, (The)
AV = |ty — tr-1]
_ | - | 1Y
— k k _ - _ (k,w) w
AUC-PR = 7 Z APrecision * ARecall VERRSER 4 Z Z A i
2 k—l w=1 k=1
) Akw) = Ak Ak g ak ok
, Ak = Recall(Thy) — Recall(Thy_) rew ~ Rew, " “Pre,,_; " “Ree,
with: Recall Ak = Recall,_, (Thy) — Recall,_, (Thg_y)
Clak = Precision(Thy_,) + Precision(Thy.) with: { Retw fw 2Tk S
Precision -1 Af,rrw = Precisiong,, (Thy_) + Precision,, (Thy)
AY = |y = taw-1]
[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. Elmore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation KDD 2025 | 03/08/2025 | 182
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Evaluation measures: VUS

How is it computed?

Time Complexity: O(NT)

With:
- T: the time series length
- N:the number of thresholds

[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation
measure for time-series anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774-2787.



Evaluation measures: VUS

How is it computed?

Time Complexity: O(NT) Time Complexity: O(NLT)
With: With:
T: the time series length - T: the time series length
N: the number of thresholds - N:the number of thresholds
L: the number of buffer lengths




Evaluation measures: VUS

How is it computed?

Time Complexity: O(NT) Time Complexity: O(NLT)
With: With:
- T: the time series length - T: the time series length
- N:the number of thresholds - N:the number of thresholds
- L:the number of buffer lengths

VUS is significantly slower to compute, complicating its usage in practice

[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation
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Evaluation measures: VUS
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Evaluation measures: VUS

A solution?
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Evaluation measures: /US
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Evaluation measures: VUS

A solution?
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Evaluation measures: VUS

A solution?

(a) Anomaly Score
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Evaluation measures: VUS
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Part 4: Anomaly Detection
Benchmarks
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Anomaly Detection methods: Existing
benchmark
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Anomaly Detection methods: Existing
benchmark

4 HEX/UCR [18] A

Set of 250 time series with
labels.

Details

- The labels have been
manually checked and are
reliable

- Each time series contains
only 1 labeled anomaly
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Anomaly Detection methods: Existing
benchmark

4 N [ . I
HEX/UCR [18] TimeEval [5]
Set of 250 time series with Set of 976 time series with
labels. labels.
Details Details
- The labels have been - New synthetic benchmark
manually checked and are GutenTag used to tune
reliable parameters
- Each time series contains - Only Time series with low
only 1 labeled anomaly contamination rate (< 0.1)
- Time series with at least one
\ ) LU methods above 0.8 AUC-ROC D
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Anomaly Detection methods: Existing

benchmark

-

HEX/UCR [18]

Set of 250 time series with
labels.

Details

TimeEval [5]

- The labels have been

manually checked and are
reliable

Each time series contains
only 1 labeled anomaly

Set of 976 time series with
labels.

Details

New synthetic benchmark
GutenTag used to tune
parameters

Only Time series with low
contamination rate (< 0.1)

Time series with at least one
methods above 0.8 AUC-ROC

TSB-UAD [19]

Set of 2000 time series with
labels.

Details

J

Collected as proposed in the
literature (no filtering based
on contamination, size or
label quality)

Artificial and synthetic data
generation methods for
reliable labels

J
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Anomaly Detection methods: Existing
benchmark
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Anomaly Detection methods: Existing

benchmark

Artificial dataset generation

Synthetic dataset generation
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Anomaly Detection methods:
Experimental evaluation

Observations on TimeEval [5]:

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779-1797.

Unsupervised

Semi-supervised

Methods AUC-ROC
Sub-LOF [22] 2% 0% 0% - 1
GrammarViz [120] 3% 0% 0% 1 T}
DWT-MLEAD [134] 0% 0% 0% 1 T H
VALMOD [82] 1% 9% 11% i ENNNN |
SAND [17] 5% 1% 22%| | 1 : )
Left STAMPi [156] 2% 0% 1% f { : i
Series2Graph [16] 0% 0% 5% f [ T T H
IARIMA [65] 7% 0% 0% b T H
PCI [157] 0% 0% 0%| | I : J
STOMP [164] 2% 0% 0% | ! ]
STAMP [156] 4% 0% 0%| F ! : J
Triple ES [1] 15% 0% 9% = 7 1+
NumentaHTM [3] 0% 0% 0% e I
NormA-SJ [15] 10% 1% 3%| F ! : H
Sub-IF [83] 0% 0% 0%| ! T 1+
MedianMethod [10] 0% 0% 0%| | = 1+
SR [112] 0% 0% 0% | T 1+
PS-SVM [85] 12% 0% 0% b T }+—
PST [128] 0% 4% 0% ! T 1
SSA [155] 1% 0% 0% N |
HOT SAX [70] 24% 1% 1% e T |
TSBitmap [144] 0% 0% 0% ] F -
DSPOT [122] 6% 0% 0% {3
FFT [111] 0% 0% 0% |
S-H-ESD [62] 0% 0% 49% E
Donut [150] 1% 1% 2% - T
RForest [21] 12% 0% 0% 1 T
[E-CAE [44] 0% 0% 1%| ! - T H
[XGBoosting [34] 0% 0% 0% {1
OceanWNN [143] 0% 0% 10% {1 T
Bagel [79] 19% 0% 2% t T 1 {
SR-CNN [112] 22% 0% 1% E
TARZAN [71] 0% 0% 18%| H—1 | f—
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Anomaly Detection methods:
Experimental evaluation

Observations on TimeEval [5]:

- Distance-based and Density-based methods
have a better accuracy (AUC-ROC) than
forecasting and reconstruction-based
approaches

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779-1797.

Unsupervised

Semi-supervised

Methods AUC-ROC

Sub-LOF [22] 2% 0% 0% - 1
GrammarViz [120] [3% 0% 0% 1 T}
DWT-MLEAD [134] |0% 0% 0% 1 T H
VALMOD [82] 1% 9% 11% i ENNNN |
SAND [17] 5% 1% 22%| | 1 : )
Ceft STAMPI [156] |2% 0% 1% f { : i
Series2Graph [16] 0% 0% 5% f [ T T H
ARIMA [65] 7% 0% 0% b T H
PCI [157] 0% 0% 0% ! I : J
STOMP [164] 2% 0% 0% | ! i ]
STAMP [156] 4% 0% 0%| F ! : J
Triple ES [1] 15% 0% 9% = 7 1+

UmentaHIM [3] (0% 0% 0% e I
NormA-SJ [15] 0% 1% 3%| F ! : H
Sub-IF [83] 0% 0% 0%| ! T 1+
MedianMethod [10] 0% 0% 0%| | = 1+
SR [112] 0% 0% 0% | T 1+
PS-SVM [85] 12% 0% 0% b T }+—
PST [128] 0% 4% 0% ! T 1
SSA [155] 1% 0% 0% N |
HOT SAX [70] 24% 1% 1% e R
TSBitmap [144] 0% 0% 0% ] F -
DSPOT [122] 6% 0% 0% {3
FFT [111] 0% 0% 0% |
S-H-ESD [62] 0% 0% 49% E
Donut [150] 1% 1% 2% - T
RForest [21] 12% 0% 0% 1 T
[E-CAE [44] 0% 0% 1%| ! - T H
[XGBoosting [34] 0% 0% 0% {1
OceanWNN [143] 0% 0% 10% {1 T
Bagel [79] 19% 0% 2% f T 1 i
SR-CNN [112] 22% 0% 1% E
TARZAN [71] 0% 0% 18%| H—1 | p—
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Anomaly Detection methods:
Experimental evaluation

Observations on TimeEval [5]:

- Distance-based and Density-based methods
have a better accuracy (AUC-ROC) than
forecasting and reconstruction-based
approaches

- Semi-supervised methods are not
outperforming Unsupervised approaches

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779-1797.

Unsupervised

Semi-supervised

Methods AUC-ROC
Sub-LOF [22] 2% 0% 0% - 1
GrammarViz [120] 3% 0% 0% 1 T}
DWT-MLEAD [134] 0% 0% 0% 1 T H
VALMOD [82] 1% 9% 11% i ENNNN |
SAND [17] 5% 1%22%| ! 1 : )
Left STAMPi [156] 2% 0% 1% f { : i
Series2Graph [16] 0% 0% 5% f [ T T H
IARIMA [65] 7% 0% 0% b T H
PCI [157] 0% 0% 0% ! I : J
STOMP [164] 2% 0% 0% | ! i ]
STAMP [156] 4% 0% 0% | ! : J
Triple ES [1] 15% 0% 9% = 7 1+
NumentaHTM [3] 0% 0% 0% e I
NormA-SJ [15] 10% 1% 3%| F ! : H
Sub-IF [83] 0% 0% 0%| ! T 1+
MedianMethod [10] 0% 0% 0%| | = 1+
SR [112] 0% 0% 0% | T 1+
PS-SVM [85] 12% 0% 0% b T }+—
PST [128] 0% 4% 0% ! T 1
SSA [155] 1% 0% 0% N |
HOT SAX [70] 24% 1% 1% e R
TSBitmap [144] 0% 0% 0% ] F -
DSPOT [122] 6% 0% 0% {3
FFT [111] 0% 0% 0% |
S-H-ESD [62] 0% 0% 49% E
Donut [150] 1% 1% 2% - T
RForest [21] 12% 0% 0% 1 T
[E-CAE [44] 0% 0% 1%| ! - T H
[XGBoosting [34] 0% 0% 0% {1
OceanWNN [143] 0% 0% 10% {1 T
Bagel [79] 19% 0% 2% f T 1 i
SR-CNN [112] 22% 0% 1% E
TARZAN [71] 0% 0% 18%| H—1 | p—
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Anomaly Detection methods:
Experimental evaluation

Observations on HEX/UCR [18]:

- Distance-based methods have a better
accuracy (AUC-ROC) than forecasting and
distribution-based approaches

[18] R. Wu and E. Keogh, "Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the lllusion
of Progress" in IEEE Transactions on Knowledge & Data Engineering, vol. 35, no. 03, pp. 2421-2429, 2023.
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Anomaly Detection methods:
Experimental evaluation

Observations on HEX/UCR [18]:

- Distance-based methods have a better
accuracy (AUC-ROC) than forecasting and
distribution-based approaches

[18] R. Wu and E. Keogh, "Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the lllusion
of Progress" in IEEE Transactions on Knowledge & Data Engineering, vol. 35, no. 03, pp. 2421-2429, 2023.
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Anomaly Detection methods: N o |

Experimental evaluation e H

AE } ) _l

IFOREST - } @ —|

Observations on TSB-UAD [19]: ForesT1{ | O —

] |

- Distance-based methods have a better e ! N |

accuracy (AUC-ROC) than forecasting-based ol ] o |

methods. | '

- Isolation Forest (distribution-based and not Hos { | ® |
proposed for time series) have also a strong

accuracy rcad | o —

- AutoEncoder (AE) is also very accurate. =T | ® |

POLY - Ii @ 4|

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: an OCSVM - } ® —l

end-to-end benchmark suite for univariate time-series anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711. ’ ' : : . ’
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Anomaly Detection methods:
Experimental evaluation

Observations on TSB-UAD [19]:

- Distance-based methods have a better
accuracy (AUC-ROC) than forecasting-based
methods.

- Isolation Forest (distribution-based and not
proposed for time series) have also a strong
accuracy

- AutoEncoder (AE) is also very accurate.

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: an

NORMA R

MP H

AE R

IFOREST [

IFOREST1

CNN +

LOF -

HBOS A

PCA -

LSTM A

POLY ~

OCSVM A

end-to-end benchmark suite for univariate time-series anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711.
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Anomaly Detection methods:

Point-based anomaly

Experimental evaluation

CNN A

NORMA A
MP -
Observations on TSB-UAD [19]: st |
LOF -
AE A
IFOREST1 A
POLY A
IFOREST -+
PCA A
HBOS A
[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael
J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series oCSVM
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711.
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Anomaly Detection methods:

Experimental evaluation

CNNR

NORMA -

MP -

Observations on TSB-UAD [19]:

LSTM[4

LOF A

- Forecasting methods (LSTM and CNN) are

very accurate for point anomalies AE -

- But have poor performances on sequence-
based anomalies.

POLY -+

IFOREST -+

PCA A
HBOS -+
[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael
J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series oCSVM
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711.

IFOREST1 A

AUC-ROC

Point-based anomaly sequence-based anomaly
oI wwl | o L
4| - <

)—E]'l o T e I ey

|_E rores | | o H

—e H eos | | o —

— H| =l e

| ® — | rForest1{ | ° -

— o [— ory | & —
E— — oNN I ® i

— i LsM | } ° i
— — PoY ] ® —
— & — ocswy f—o—4 ©® —H

AUC-ROC

KDD 2025 | 03/08/2025 | 210




Anomaly Detection methods:

Experimental evaluation Ratio>0.1 Rati0<0.001
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Anomaly Detection methods: Experimental evaluation

Observation from the results applied on specific datasets (TSB-UAD [19])

(a.1) Example from ECG dataset Y (a.2) ECG. (c.1) Example from Daphnet dataset (c.2) Daphnet
.81 = 0.6 ’ C T
& L & 0.4 . 1
S 0.4 i : ; % E O . I
S é 202 ; : i é
ol =B =, o L T BE T T EEEES
(b.1) Example from MGAB dataset (b.2) MGAB (d.1) Example from YAHOO dataset (d 2) YAHOO
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There is no overall winner.

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711.
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Anomaly Detection methods: Experimental evaluation

Method X:
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Select dataset:

Select measure
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210 time series snippet (40k points maximum)

Theseus [27]

An interactive tool to compare anomaly detection

methods

VLDB 2022

Github repo

)

[27] Paul Boniol, John Paparrizos, Yuhao Kang, Themis Palpanas, Ruey S. Tsay, Aaron J. EImore, and Michael J. Franklin. 2022.

Theseus: navigating the labyrinth of time-series anomaly detection. Proc. VLDB Endow. 15, 12 (August 2022), 3702-3705.
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Benchmark Practice: Common Flaws in Dataset

{ Mislabeling } { Bias } { Feasibility }

100 200 300 400 500
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Benchmark Practice: Common Flaws in Dataset

{ Mislabeling } { Bias } { Feasibility }

100 200 300 400 500

False Positive
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Benchmark Practice: Common Flaws in Dataset

{ Mislabeling ] { Bias ] { Feasibility ]

Run-to-failure Bias CJA')

200 400 600 800 1000 1200 1400
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Benchmark Practice: Common Flaws in Dataset

{ Mislabeling } { Bias ] { Feasibility }

Run-to-failure Bias @

200 400 600 800 1000 1200 1400

Single Anomaly Bias
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k 30k 40k 50k
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Benchmark Practice: Common Flaws in Dataset

{ Mislabeling ] { Bias ] { Feasibility ]

Lack of In-context Data

W

19k 19.5k 20k 20.5k 21k 21.5k
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Benchmark Practice: Common Flaws in Dataset

{ Mislabeling } { Bias } { Feasibility ]

Lack of In-context Data

W

19k 19.5k 20k 20.5k 21k 21.5k

Unrealistic Anomaly Ratio
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Benchmark Practice: Dataset Construction

Univariate

s

Transform

PUmK*'MW
Collection ‘TT‘rTTT‘TT‘FT‘T‘er‘

____________________

((

Multivariate

Step 1:
Dataset Collection
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Benchmark Practice: Dataset Construction

Univariate

WWW1\@2 (ATTTTSTISITAOIN

Transform

(e N SR TR
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Collection NOCUISURS i nnotator | TTTTTTTTTTTIT ,

Multivariate

((

Step 2:

Flaws Identification

Step 1:
Dataset Collection
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Benchmark Practice: Dataset Construction

Univariate

JJLUJJJLLU%U,LLLLU1\ %g Wﬁg+@;§

Transform

((

’K ___________________ \ S W >
Public TWE Human EWE Algorithm Test
Collection W Annotator | ,.

____________________

Multivariate

Step 2:

Flaws Identification

Step 1:
Dataset Collection

Step 3:
Label Quality Assessment
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Benchmark Practice: Dataset Construction

Catogory | spit | #15 | (8| MG | acomales | Reto”
Al 870 | 38814.1 179.5 39.7 2.4%
Eval | 350 | 51886.7 321.3 46.6 4.5%
Tuning | 48 | 471433 185.9 82.6 3.5%
All | 200 | 107760.4 582.6 71.1 5.1%
Eval | 180 | 108826.7 591.2 67.7 5.0%
Tuning | 20 | 98164.1 504.7 101.1 5.7%
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VUS-PR

Benchmark Practice: Evaluation
» VUS-PR Ranking
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4 | Series2Graph
5 | MOMENT (FT)
6 | MOMENT (Z9)
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8 |USAD

9 | Sub-KNN
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VUS-PR

Benchmark Practice: Evaluation
» VUS-PR Ranking
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VUS-PR

Benchmark Practice: Evaluation
» VUS-PR Ranking

TSB-AD-U

1.0

0.8

0.6

0.4

0.2

0.0

1 HE—

e

Sub-PCA -

D
<<
v
Q.
©
£
2

PoF_—'

Series2Graph

MOMENT (FT) -

MOMENT (ZS) -

D
<
2
©
]
>

D
<
%)
-’

Sub-KNN -

MatrixProfile -

SAND -
CNN

¢, | Sub-PCA

% KShapeAD
@ Top-performing methods been

© |POLY overlooked for many years

4 | Series2Graph

5 | MOMENT (FT)

; LA;‘)::ZTD(ZS) ® Performance of time-series
foundation models shows promise

8 | USAD

9 | Sub-KNN

10 | MatrixProfile

11 | SAND

12 | CNN
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VUS-PR

Benchmark Practice: Evaluation
» VUS-PR Ranking

TSB-AD-M

1.0

0.8 A

® Neuvural-network-based methods
strive in multivariate cases

AutoEncoder -
KMeansAD -

¢, | NN

é OmniAnomaly
© |PCA

4 | LSTMAD

5 USAD

6 | AutoEncoder
7 | KMeansAD
8 CBLOF

9 | MCD

10 | OCSYM

11 | Donut

12 | RobustPCA
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VUS-PR

Benchmark Practice: Evaluation
» VUS-PR Ranking

TSB-AD-M

10{+ + + T + T T

0.8 A

LSTMAD -
AutoEncoder A
KMeansAD
CBLOF A

ocsvM { ]

Donut -

¢, |CNN
v/ .
OmniA I

© | ¥mniAnomaly ® Nevral-network-based methods
© |PCA strive in multivariate cases
4 | LSTMAD
5 | USAD
6 | AutoEncod . .

romneoce Simpler architectures generally
7 | KMeansAD outperform more complex designs
8 | CBLOF
9 | MCD
10 | OCSYM
11 | Donut
12 | RobustPCA
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Benchmark Practice: Fvaluation

1070 Curated Time Series

40 TSAD Algorithms

10 Evaluation Measures

\_

TSB-AD [27]

Towards a reliable time-series anomaly detection
benchmark

NeurlPS 2024 Homepage

[27] Liu, Q. and Paparrizos, J., 2024. The elephant in the room: Towards a reliable time-series anomaly detection benchmark.

Advances in Neural Information Processing Systems, 37, pp.108231-108261.




Part 5: Automated Solutions
for Anomaly Detection
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Automated Solutions: Background

M t, t, 7//. KShapeAD I KMeansAD i LSTMAD N TimesNet == TimesFM S8 MOMENT
otivation:
g Y /
- No one-size-fits-all model: How can we g 02 Z Z
. . . >
automatically identify the best anomaly %

detector given a time series? -
5 : : \MJM /‘/ WWMMWWWW «AWWWW

- No comprehensive evaluation benchmark :
Facility HumanActivity Medical Sensor Webservice

[29] Maroua Bahri, Flavia Salutari, Andrian Putina, and Mauro Sozio: AutoML: state of the art with a focus

on anomaly detection, challenges, and research directions. International Journal of Data Science and

Analytics 14(2): 113-126 (2022).

[41] Qinghua Liu, Seunghak Lee, and John Paparrizos: TSB-AutoAD: Towards Automated Solutions for KDD 2025 | 03/08/2025 | 231
Time-Series Anomaly Detection. VLDB 2025.



Automated Solutions: Background

Motivation:

- No one-size-fits-all model: How can we
automatically identify the best anomaly
detector given a time series?

- No comprehensive evaluation benchmark

Challenge:

- Lack of labeled data
- Absence of universal objective function

7//. KShapeAD I KMeansAD " LSTMAD TimesNet == TimesFM @8 MOMENT
7
Y
/ ? L
7 T 7/
ZliN= W :: 7 |[- el e
ﬂ A/ A
\v ‘uf/k MM MJJJJMJMJJHWM Ao g
FaC|I|ty HumanActivity Medical Sensor WebserV|ce

[29] Maroua Bahri, Flavia Salutari, Andrian Putina, and Mauro Sozio: AutoML: state of the art with a focus
on anomaly detection, challenges, and research directions. International Journal of Data Science and

Analytics 14(2): 113-126 (2022).

[41] Qinghua Liu, Seunghak Lee, and John Paparrizos: TSB-AutoAD: Towards Automated Solutions for

Time-Series Anomaly Detection. VLDB 2025.
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Automated Solutions: Taxonomy

(a) Model Selection

| Labeled TSXm P ¢ REXMm

E s | - |sa | (aud)

E TSI /\WW\ M1 |05 0.9 E Meta-

! learning (a) Model Selection:

TS A/\/\AWMJ\MW ! .

pom wn Jo7] - foo Selecting the best anomaly detector from a
/™ L v

Model | 7 predefined candidate model set.
(- | selector - (a.1) Meta-learning-based

(a.2) Internal Evaluation D - (a.2) Internal Evaluation
Precision
" —> | M1 P> M2
—> M Synthetic Anomaly
> - Injection
L) Mn Thresh ¢ Silhouette MI
, M2 = Ml
Candidate
Model Set Clustering Quality
\ Ranking /
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Automated Solutions: Taxonomy

(a) Model Selection

TS gl
ETSm m%

Candidate

L) Mn Thresh

Model
} N
f— —> Selector

(a.2) Internal Evaluation

Synthetic Anomaly

Injection

Cl

\Model Set Clustering Quality

M1 0.5 0.9

(a.1)

: Meta-
:learning

Ml

o M2
Precision

—> | M1 >

M2

Silhouette | M1

M2 P>

Ml

Ranking

—

(b) Model Ensembling —\

J

e M/“ L aaas Anomaly Score
A
(_/‘\
Ml’l JW\/\/—/J \_/\/V MEnS /

(b) Model Ensembling
Aggregating predictions from
multiple candidate models using
ensemble strategies.
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Automated Solutions: Taxonomy

(a) Model Selection

—

(b) Model Ensembling

ET TS, TSmI (a.1)

' Sl /W\ M1 |05 09 I' Meta-
ilearning
ETSm A/\N% Mn fo7 ] .. Jos i
Sl mpreoyeyen v

Model
—>» Ml
( - Selector
(a.2) Internal Evaluation N D
Precision
" —> | M1 P> M2
—> M Synthetic Anomaly
—> Injection
L) Mn Thresh ¢ Silhouette MI
, M2 = Ml
Candidate
Model Set Clustering Quality
\ Ranking /

)

e Wf Lann, Anomaly Score
P .
i M
Mn |—r - (S Ens /
/— (c) Model Generation
Inlier Outlier Unsure
v ( [ Inlier
Ml YT A
M2 }_ Pseudo
Label
Mn y
Majority Voting ¢
Outlier MG
Classifer s

N

/

(c) Model Generation
Constructing of a
completely new
model based on the
candidate set, which
can then operate as
an anomaly detector
to produce scores



Automated Solutions: Meta-learning

[ TSB-AutoAD |

I
v v v

Definition: Using insights from historical [ el Sttt ]
labeled datasets to select the best oce” seeeron Model Model
\ v - -
model for new data _ Meta- leaming Internal Ensembhng Generation
= v
= -
- Classification: MSAD N |SATzilla ISAC
- Regression: SATzilla, UReg, CFact g B ARGOSMART
- Nearest Neighbor: ARGOSMART N
- Other Optimization: ISAC, MetaOD § _
v
: ) 1\‘;IetaOD v v
S - E MSAD UReg CFact
N ~
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Automated Solutions: Meta-learning

(a) Time series T

_____________________________________________________________________

ML LAY

1
.

Y 2500 5000
Ln'LLM‘M g —> P(T,e) =D, |=
_______ e 1 11 > (c) _)P(T}'g)=D1 §_|—> D>
Detector ' S
....... > —> P(T.,) =D =
JLAMAA\WM selection - ( k'f) - 2 > j
N method | - : =
,MU\\MMJUU‘L N —>P(Tz,e)=D3) E
\ J]
(b) Set of subsequences of length ¢ Proposed pipeline )

Luo Eas_uTuuna

Image from [29]: Model Selection Pipeline.

[29] Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos Trahanias, Themis Palpanas. 2023. Choose wisely: An extensive
evaluation of model selection for anomaly detection in time series. Proceedings of the VLDB Endowment 16(11): 3418-3432.

KDD 2025 | 03/08/2025 | 237



Automated Solutions: Meta-learning

D D D
- ~ 1 2 3
E——| | b, TS, | 05 | 07 | 0.9
Jﬂ e 1 s < oe o2 o7 Performance measures:
W1 | b, N B Il Ml F-score, AUC-PR, VUS-PR ...
—
| J D;
- /
Time Series Candidate Performance
For Training Model Set Matrix
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Automated Solutions: Meta-learning

Lli:—— | | b, TS, | 05 | 07 | 0.9

nl l “\-—)

L
JMMMUUU\M—’ D, > 52| 06104 07 > Classification ?

: TS; | 0.5 | 0.8 | 0.6
AWMM = D

—

- /
Time Series Candidate Performance
For Training Model Set Matrix

[29] Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos Trahanias, Themis Palpanas. 2023. Choose wisely: An extensive

evaluation of model selection for anomaly detection in time series. Proceedings of the VLDB Endowment 16(11): 3418-3432.
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Automated Solutions: Meta-learning

D D D D D D
/ \ 1 2 3 1 2 3
[THNN ] S—y TS, | 05| 0.7 | 0.9 TS, | 0 | 0o | 1
N |
M\MMM ; - TS, | 05 | 0.8 | 056 irss ol 1| o
J—>
N A L/ DS
\_ %
Time Series Candidate Performance Label
For Training Model Set Matrix abe
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Automated Solutions: Meta-learning

Lli:—— | | b, TS, | 05 | 07 | 0.9

nl l “\-—)

L
JMMMUUU\M—’ D, (1720004 | B . Regression ?

—
: | ) D;
- /
Time Series Candidate Performance
For Training Model Set Matrix

[32] Lin Xu, Frank Hutter, Holger H Hoos, Kevin Leyton-Brown. 2008. SATzilla: portfolio-based algorithm selection for SAT. Journal

of Artificial Intelligence Research 32: 565-606. KDD 2025 | 03/08/2025 | 241



Automated Solutions: Meta-learning

[THNN ] S—y TS, | 05| 0.7 | 0.9 TS, | 05| 07 | 0.9

nl l “\—)

1
J TS, | 0.6 | 0.4 | 0.7 TS, | 0.6 | 0.4 | 0.7
MMM 1 T 2. > :

MAWM ; TS; | 0.5 | 0.8 | 0.6 TS; | 0.5 | 0.8 | 0.6
J—>
l Ind U
- /
Time Series Candidate Performance Label
For Training Model Set Matrix abe
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Automated Solutions: Internal Evaluation

Definition: Evaluate the effectiveness of
a model without any reliance on
external information

- Stand-alone: Clustering Quality,
EM&MYV, Synthetic anomaly injection

- Collective: Model Centrality, Rank
Aggregation

2024 2020 2015 2010

SATzilla
ARGOSMA

Time

[

v

TSB-AutoAD ]

v

Meta-learning

v

v v v
Model Selection
| ] ModeI. Mode.I
M Ensembling Generation
Internal
ISAC
RT
CQ| UEC
v
MC v

' M Synthetic

1\‘;IetaOD \

MSAD UReg CFact TSADAMS
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Automated Solutions: Internal Evaluation

Metrics on Test TS Rankings

— ~= Anomaly
— Y_hat ==== Anomaly Scores

MS
(Y] ; M IRAad ) T/ M,

M, - Prediction Error
M, :

Train TS
M,

Trained Models

Image from [28]: Internal Evaluation workflow.

[28] Mononito Goswami, Cristian Challu, Laurent Callot, Lenon Minorics, Andrey Kan. 2023. Unsupervised Model Selection

for Time-series Anomaly Detection. In Proceedings of the International Conference on Learning Representations.
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Automated Solutions: Internal Evaluation

Metrics on Test TS Rankings

~= Anomaly
=== Anomaly Scores

W MSE | M
! ? M,
bt . W

v
- Prediction Error
— TS -=== TS w/o anomaly —— Anomaly M:;
4 Scale
> M,
Anomaly
Ml
Synthetic Anomaly Injection
Train TS

Trained Models

Image from [28]: Internal Evaluation workflow.

[28] Mononito Goswami, Cristian Challu, Laurent Callot, Lenon Minorics, Andrey Kan. 2023. Unsupervised Model Selection

for Time-series Anomaly Detection. In Proceedings of the International Conference on Learning Representations.
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Automated Solutions: Internal Evaluation

Metrics on Test TS

~= Anomaly
=== Anomaly Scores

W MSE | M, |
! ? M,
bt . W

v
~ Prediction Error
. ¥S -=== TS w/o anomaly —— Anomaly M:;
B Scale
» M,
Anomaly

Ml

Synthetic Anomaly Injection
Train TS ololo|1|1]1]oo]fo DisE 6 M
ojlo|1f1|1]1]|ofof0}—» M,
ojojojoj1f1]1)0]0 \/I
. 3 L
Trained Models Model Centrality :

Rankings

Image from [28]: Internal Evaluation workflow.

[28] Mononito Goswami, Cristian Challu, Laurent Callot, Lenon Minorics, Andrey Kan. 2023. Unsupervised Model Selection
for Time-series Anomaly Detection. In Proceedings of the International Conference on Learning Representations.
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Automated Solutions: Internal Evaluation

Metrics on Test TS

~= Anomaly
=== Anomaly Scores

W MSE | M,
(¥, ' Vs i M, Best Model

v
~ Prediction Error l
— TS -=== TS w/o anomaly —— Anomaly M:; M3
4 Scale
o M, RRA Bl—| M,
Anomaly y
M1 1M M,
. % . min d.(o",0;).
Synthetic Anomaly Injection o 2_;

Train TS Tl tate | ako Tailo R M,

ojlo|1f1|1]1]|ofof0}—» M,

ojojojoj1f1]1)0]0 \/I

. . v

Trained Models Model Centrality
Rankings

Image from [28]: Internal Evaluation workflow.

[28] Mononito Goswami, Cristian Challu, Laurent Callot, Lenon Minorics, Andrey Kan. 2023. Unsupervised Model Selection
for Time-series Anomaly Detection. In Proceedings of the International Conference on Learning Representations.
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Definition: Integrate predictions from

Automated Solutions: Model Ensembling

the candidate model set

Full: OE
Selective: SELECT, HITS, IOE,
AutoTSAD

2024 2020 2015 2010

<&

TSB-AutoAD ]

v v v
[ Model Slelectlon ] Model Model
v M Ensembling Generation
Meta-learning Internal
v
SATzilla ISAC
ARGOSMART
cQ| UEC | OF gprpcrr
v
v
MC y
g NletaOD v M Synt?hetic H£:FS Y
= MSAD UReg CFact TSADAMS v IOE

AutoTSAD
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Automated Solutions: Model Generation

[ TSB-AutoAD |
|

Definition: Creating an entirely new [ Model ; oot ] v :
model tailored to a specific dataset oce” seeeron Model Model
i A v Ensemblin Generation
based on the predefined model set. _ NieTatl At Internal g
= v
S ] .
- Full: OE N [SATzilla ISAC
- Selective: SELECT, HITS, IOE, g B ARGOSMART
AutoTSAD AN OE
- CQ| UEC SELECTT
S 7] v MC »
N v
< g NetaOD v M Y Synthetic H£:FS ¥ AutoOD-A" Y
S 1.5 MSAD UReg CFact TSADAMS V" IOE  AutoOD-C UADB
a8 JF AutoTSAD
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Automated Solutions: Fvaluation

90% < Supervised Selection

\

75% < Global Best —————
~ 60% <Random -

L 0 || e

V © &
( N) NS &,

(

Accuracy overview of automated solutions for time-series anomaly detection in
terms of accuracy. Methods are arranged from left to right based on their
performance, with the highest accuracy (measured by VUS-PR) on the left.

[41] Qinghua Liu, Seunghak Lee, and John Paparrizos: TSB-AutoAD: Towards Automated Solutions for
Time-Series Anomaly Detection. VLDB 2025. KDD 2025 | 03/08/2025 | 250



Automated Solutions: Fvaluation

Average VUS-PR

o
w

o
o

©
n

©
I

©
N

e MetaOD (ID) JSynthetic ~ aHITS
\ ¢*MetaOD (0OD) CQ UEC
Global Best (GB) %E\OSADI\ACS:
IOE
_ A MC
Avg Inference Time (sec) SELECT

e Meta v Internal A Ensembling < Generation
oSATzIla (ID)
oUReg (ID) AOE
JADB
AutoOD-A

SATzilla (OOD)
gng (OOD)

102 103

(a) illustration of the relationship
between VUS-PR and average
detection time across the benchmark
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Automated Solutions: Fvaluation

Average VUS-PR

(a)

e Meta v Internal 4 Ensembling < Generation
@SATZilla (D)
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(b) Inference Time (sec)
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Automated Solutions: Fvaluation

(a) Meta-learning (ID) vs. Others

242322212019181716151413121110 9 87654321

MC ————— [ Ll -— |— Oracle
IOE ™ [————— SATzilla (ID)
SELECT —— L MSAD (ID)
TSADAMS ARGOSMART (ID)
AutoOD-C OE
CcQ UReg (ID)
UEC SS
Random UADB
FM CFact (ID)
MetaOD (ID) AutoOD-A
Synthetic ISAC (ID)
GB HITS

(b) Meta-learning (OOD) vs. Others

2423222120191817161514131211109 8 7 6 5 4 3 21

MC 4|- By - |— Oracle
I0E ———- -y ‘———OFE
SELECT ——— ——SS
TSADAMS ‘——— UADB
AutoOD-C AutoOD-A
UEC MSAD (00D)
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ISAC (OOD) HITS
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Automated Solutions: Fvaluation

(a) Meta-learning (ID) vs. Others

242322212019181716151413121110 987654321

MC ————— (T Ll — |— Oracle
IOE M |——— SATzilla (ID)
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AutoOD-C OE
CcQ UReg (ID)
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Synthetic ISAC (ID)
GB HITS

(b) Meta-learning (OOD) vs. Others
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Part 6: Conclusion and Open

Problems
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Open Problems: Context-aware

number of taxi passengers in New York City

0 2000 4000 000 8000 / \

Daylight Flooding Snowstorm
Saving Time
(DST)
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Open Problems: Context-aware

Christmas
number of taxi passengers in New York City week

0 2000 4000 000 8000 / \

Daylight Flooding Snowstorm
Saving Time
(DST)

KDD 2025 | 03/08/2025 | 258



Open Problems: Foundation Model

Adaptation

-~

NLP  CV

—

| |
v v Knowledge

~

= \ o | e.g., Llama-3, LLaVA,
— Gemini, GPT-4, GPT-4V

Foundation Transfer
Model

\

‘ TSAD
g Task

/

Native

-
|

\

e.g., MOMENT, Chronos,
Lag-Llama, TimesFM

h h—" Foundation TSAD
Model Task

/
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Open Problems: Foundation Model

Emerging trends in developing
time series foundation model

Sundial Time-MOE Moirai MOMENT TimesFM Chronos Lag-Llama
(ICML25) (ICLR25) (ICML24) (ICML24) (ICML24) (TMLR24) (NIPSw23)

Architecture

Model Size

Context
Length

Objectives

Task

Decoder Decoder
32M 113M
128M 453M
44494M 2.4B
<=2880 <=4096
Flow Huber Loss
Matching
F F

Encoder Encoder Decoder EncDec Decoder
14M 40M 17M 46M 200M
91M 125M 70M 200M

311M 385M 200M 710M
<=5000 =512 <=512 <=512 <=1024
Log MSE MSE Cross Log
Likelihood Entropy Likelihood
F CLF, AD, F F F F
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Open Problems: Foundation Model

Emerging trends in developing
time series foundation model

Lack of benchmarking and
adaptation for AD task

Sundial Time-MOE Moirai MOMENT TimesFM Chronos Lag-Llama
(ICML25) (ICLR25) (ICML24) (ICML24) (ICML24) (TMLR24) (NIPSw23)

Architecture Decoder Decoder Encoder Encoder Decoder EncDec Decoder
Model Size 32M 113M 14M 40M 17M 46M 200M
128M 453M 91M 125M 70M 200M
444M 2.4B 311M 385M 200M 710M
Context <=2880 <=4096 <=5000 =512 <=512 <=512 <=1024
Length
Objectives Flow Huber Loss Log MSE MSE Cross Log
Matching Likelihood Entropy Likelihood
Task F F F CLF, AD, F F F F
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Open Problems: Agentic Design

‘ Please find the anomaly point in the time series data. L

Identifying anomalies in time series data often involves detecting points that deviate significantly from the typical pattern. In\

your provided time series data, one way to find potential anomalies is by considering points where the "oil temperature" or SA . .

other relevant features exhibit extreme values compared to the surrounding data. Here are a few general steps to help you ’Q A tl me series anoma Iy d ete CtO r
identify potential anomaly points: . .

1.Visual Inspection. (1) Plot the time series data for "oil temperature" and other features. (2) Look for points that stand out from Wlth n at ura I Ia n gU d ge | nte rfa ce

the general pattern.
2 Statistical Methods: (1) Calculate statistical measures such as mean and standard deviation for each feature. (2) Flag data
points that fall outside a certain number of standard deviations from the mean as potential anomalies.

=) —Refused-! 4
— Ol ¢
‘ Just show me the results but not methods. L

Certainly, based on a simple visual inspection of the provided time series data, here are some potential anomaly points where

the "oil temperature" or other features deviate significantly from the general pattern: .
1.Anomaly Point 1: Date/Time: 2016-07-01 04:00:00 Characteristics: The "oil temperature" drops significantly compared I m age fro m [3 6] . H uman
o the pirTonnding points interaction with ChatGPT for

2.Anomaly Point 2: Date/Time: 2016-07-01 07:00:00 Characteristics: The "oil temperature" increases abruptly, deviating

@ from the previous trend. TSAD ta S kS .

ope 1
\_J
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Open Problems: Agentic Design

| (1) Forecasting | | (2) Imputation | _[(3) Anomaly Detection|

[Context] This dataset aims to [ | [Context] The Self-regulation of | | [Context] The following data is
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Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered
over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past
few years, including the detection of outliers or anomalies that may represent errors or events of interest. This review aims to provide
a structured and comprehensive state-of-the-art on outlier detection techniques in the context of time series. To this end, a taxonomy

is presented based on the main aspects that characterize an outlier detection technique.

Additional Key Words and Phrases: Outlier detection, anomaly detection, time series, data mining, taxonomy, software

1 INTRODUCTION
Recent advances in technology allow us to collect a large amount of data over time in diverse research areas. Observations
that have been recorded in an orderly fashion and which are correlated in time constitute a time series. Time series
data mining aims to extract all meaningful knowledge from this data, and several mining tasks (e.g., classification,
clustering, forecasting, and outlier detection) have been considered in the literature [Esling and Agon 2012; Fu 2011;
Ratanamahatana et al. 2010].

Outlier detection has become a field of interest for many researchers and practitioners and is now one of the main
tasks of time series data mining. Outlier detection has been studied in a variety of application domains such as credit
card fraud detection, intrusion detection in cybersecurity, or fault diagnosis in industry. In particular, the analysis of
outliers in time series data examines anomalous behaviors across time [Gupta et al. 2014a]. In the first study on this
topic, which was conducted by Fox [1972], two types of outliers in univariate time series were defined: type I, which
affects a single observation; and type II, which affects both a particular and the ons.
This work was first extended to four outlier types [Tsay 1988], and then to the case of multivariate time series [Tsay

et al. 2000]). Since then, many definitions of the term outlier and numerous detection methods have been proposed in the
literature. However, to this day, there is still no consensus on the terms used [Carreiio et al. 2019]; for example, outlier
observations are often referred to as anomalies, discordant observations, discords, exceptions, aberrations, surprises,
peculiarities or contaminants.
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1 Introduction

A wide range of cost-effective sensing, networking, storage, and processing solutions enable the collection of enormous
amounts of measurements over time [109-111, 122, 137, 138, 141, 143, 179, 181, 186]. Recording these measurements
results in an ordered sequence of real-valued data points commonly referred to as time series. More generic terms, such
as data series or data sequences, have also been used to refer to cases where the ordering of data relies on a dimension
other than time (e.g, the angle in data from astronommy, the mass in data from spectrometry, or the position in data
from biology) (176). Analytical tasks over time series data are necessary virtually in every scientific discipline and
their corresponding industries [14, 61, 62, 78, 161, 182, 190192, 201], including in astronomy [4, 102, 245}, biology
[11-13, 64, economics [36, 74, 148, 155, 213, 221, 240, energy sciences [6,9, 158, engineering [112, 162, 203, 243, 248],
environmental sciences [77, 84, 100, 101, 164, 207, 247], medicine [57, 199, 206], neuroscience (21, 119), and social
sciences [36, 160). The analysis of time series has become increasingly prevalent for understanding a multitude of

natural or human-made processes [187, 188]. Unfortunately, inherent complexities in the data generation of these
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Abstract—Time series anomaly detection has been a perennially important topic in data science, with papers dating back to the
19505. However, in recent years there has been an explosion of interest in this topic, much of it driven by the success of deep
learning in other domains and for other time series tasks. Most of these papers test on one or more of a handful of popular
benchmark datasets, created by Yahoo, Numenta, NASA, etc. In this work we make a surprising claim. The majority of the
individual exemplars in these datasets suffer from one or more of four flaws. Because of these four flaws, we believe that many
published comparisons of anomaly detection algorithms may be unreliable, and more importantly, much of the apparent
progress in recent years may be illusionary. In addition to demonstrating these claims, with this paper we introduce the UCR
Time Series Anomaly Archive. We believe that this resource will perform a similar role as the UCR Time Series Classification
Archive, by providing the community with a benchmark that allows meaningful comparisons between approaches and a

meaningful gauge of overall progress.
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1 INTRODUCTION

IME series anomaly detection has been a perennially

important topic in data science, with papers dating
back to the dawn of computer science [1]. However, in the
last five years there has been an explosion of interest in
this topic, with at least one or two papers on the topic
appearing each year in virtually every database, data
mining and machine learning conference, including
SIGKDD [2], [3], ICDM [4], ICDE, SIGMOD, VLDB, etc.

A large fraction of this increase in interest seems to be
largely driven by researchers anxious to transfer the con-
siderable success of deep learning in other domains and
from other time series tasks such as classification.

Most of these papers test on one or more of a handful
of popular benchmark datasets, created by Yahoo [5],
Numenta [6], NASA [2] o Peis Lab (OMNI) [3], etc. In
this work we make a surprising claim. The majority of the
individual exemplars in these datasets suffer from one or
more of four flaws. These flaws are trividlity, unrealistic
anomaly density, mislabeled ground truth and run-to-failure
bias. Because of these four flaws, we believe that most
published comparisons of anomaly detection algorithms
may be unreliable. More importantly, we believe that
much of the apparent progress in recent years may be

neural networks, and a variational auto-encoder (VAE) over-
sampling model.” This description sounds like it has many
“moving parts”, and indeed, the dozen or so explicitly
listed parameters include: convolution filter, activation,
kernel size, strides, padding, LSTM input size, dense in-
put size, softmax loss function, window size, learning rate
and batch size. All of this is to demonstrate “accuracy ex-
ceeding 0.90 (on a subset of the Yahoo's anomaly detection
benchmark datasets).” However, as we will show, much of
the results of this complex approach can be duplicated
with a single line of code and a few minutes of effort.

This “one-line-of-code” argument is so unusual that it
is worth previewing it before we formally demonstrate it
in Section 2.2 below. Almost daily, the popular press
vaunts a new achievement of decp learning. Picking one
at random, in a recent paper [8], we learn that deep learn-
ing can be used to classify mosquitos’ species. In particu-
lar, the proposed algorithm had an accuracy of 97.8%
when distinguishing Aedes vexans from Culex triaeniorhyn-
chus. Should we be impressed? One of the current authors
(Keogh) has significant computational experience work-
ing with mosquitos, and he is impressed.

Suppose however that someone downloaded the origi-

P. Boniol et al. Arxiv (2025)
[28]

R. Wu et al. TKDE (2021)
[18]
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to doubt the claims of this paper, which we only skimmed.
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ing with mosquitos, and he is impressed.

Suppose however that someone downloaded the origi-
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Abstract

‘Time-series anomaly detection is a fundamental task across scientific fields and
industries. However, the field has long faced the “elephant in the room:” critical
issues including flawed datasets, biased evaluation measures, and inconsistent
benchmarking practices that have remained largely ignored and unaddressed. We
introduce the TSB-AD to systematically tackle these issues in the following three
aspects: (i) Dataset Integrity: with 1070 high-quality time series from a diverse
collection of 40 datasets (doubling the size of the largest collection and four times
the number of existing curated datasets), we provide the first large-scale, heteroge-
neous, meticulously curated dataset that combines the effort of human perception
and model interpretation; (i) Measure Reliability: by revealing issues and bi-
ases in evaluation measures, we identify the most reliable and accurate measure,
namely, VUS-PR for anomaly detection in time series to address concerns from the

ity; and (iii) Ce i ing: with a broad spectrum of
40 detection algorithms, from statistical methods to the latest foundation models,
we perform a comprehensive evaluation that includes a thorough hyperparameter
tuning and a unified setup for a fair and reproducible comparison. Our findings
challenge the conventional wisdom regarding the superiority of advanced neural
network architectures, revealing that simpler architectures and statistical methods
often yield better performance. The promising performance of neural networks
on multivariate cases and foundation models on point anomalies highlights the
need for further ments in these methods. We open-source the benchmark

https://github.com/TheDatu
mOrg/TSB-AD -

time-series anomaly detection is widely applied across various sectors [1Z. 98, 2110 18_57. 15],
ranging from manufacturing quality assurance and data center monitoring to preventing financial

P. Boniol et al. Arxiv (2025)
[28]

R. Wu et al. TKDE (2021)
[18]

Q. Liu et al. NeurlPS (2024)
[27]

o e e L e Te o W
to doubt the claims of this paper, which we only skimmed.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.
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